Towards unlicensed cellular networks in TV white spaces

Ghufran Baig, Lili Qiu

UT Austin

Dan Alistarh, Thomas Karagiannis, Bozidar Radunovic, Matthew Balkwill

Microsoft Research

What are TV White Spaces

White Spaces are Unoccupied TV Channels

- Available for Unlicensed use
 - Required to sense TV stations and Mics

Mic

Promise of TV White Spaces

- >100 MHz of unused unlicensed spectrum
- Longer range (More than 4x of WiFi)
- Potential applications
 - Rural wireless broadband
 - City-wide mesh
 - IoT applications

Goal: Design Unlicensed TVWS network

- Long range coverage
- Allows for network co-existence
- TVWS Database access compliance

Are current wireless RATs suitable for TVWS network?

- Allows for network co-existence in Unlicensed bands
- Fundamentally difficult to modify for long range – inefficient MAC and PHY

- PHY layer designed for long range communication
- Better model for TVWS spectrum access

Wi-Fi MAC performance in TVWS

PHY layer comparison

		LTE	WiFi	
	Lowest Coding Rate	0.0762	0.5	
	Minimum SNR (dB)	- 6.7	2	
	Hybrid ARQ	Yes	No	
	PAPR	OFDMA	OFDM	
LTE	is a bett	er RAT fo	r long	range
TVWS network				

Can we use current wireless solutions in TVWS?? **4GLTE** Wifi - 802.11 af LTE/4G

- Allows for network co-existence in Unlicensed bands
- Fundamentally difficult to modify for long range – inefficient MAC and PHY
- PHY layer designed for long range communication
- Better model for TVWS spectrum access
- X No mechanism for interference mitigation

LTE/4G – Unlicensed operation

- Frequent disconnections
- 2x throughput degradation when connected

Can we design a new cellular network architecture based on LTE for TVWS?

Cell-Fi System

Channel Selection

 ETSI-compliant TVWS database client – PAWS protocol

Cell-Fi System

LTE Resource Scheduling - Idea

- LTE frame is divided into multiple resource blocks
- No overhead for RB schedule change
- Dynamically define multiple virtual channels to share channel in frequency in time

Interference Management

Ideal - Central resource allocation

 Multiple operators - No information
 sharing

Design a de-centralized LTE compatible resource allocation scheme to mitigate interference without any information sharing

Goal of interference management

- Solve a distributed channel allocation problem
 - **1. Share Calculation:** What share of resource blocks should each network?
 - **2. Resource Allocation:** Which resource blocks should each access point use and how should it adjust it dynamically?

Share Calculation

• AP's fair share of spectrum

 $A's Share(S) = \frac{No. of A's UEs}{No. of UEs in A's vicinity} \times Number of SubChannels$

How to determine No. of UEs that are effected by A's transmission?

Sensing Mechanism

- Unique start of connection signal (PRACH)
 - Any AP in the vicinity can detect it
 - If PRACH is detected client is likely to be affected by AP's transmissions

of Ues in A's vicinity = **#** of unique PRACH preambles A detected

Resource Assignment

Stochastic gradient based resource assignment

Chose S random sub-channels and generate a random (exponentially distributed) Bucket for every sub-channel

Decrement the bucket if bad channel *quality* is observed When the bucket for a sub-channel hits zero, hop to another sub-channel

How good is CellFi in estimating interference?

- LTE has CQI reports channel quality for each sub-channel
- Sub-channel CQI reported every 2 ms
 - Drop of 40% of the max in 10 consecutive reports indicates interference

Estimator works with < 2% false positives and 80% accuracy

Interference management

- Solve a distributed channel allocation problem
 - **1. Share Calculation: :** sense active users and calculate your fair share of channels (use LTE PRACH to sense users)
 - **2. Resource Allocation:** probabilistically pick some channels to achieve share and keep changing until no interference (use LTE CQI reports to sense interference)

Evaluation

- Real world experiments
 - Measure range
 - Feasibility micro benchmarks
 - Simulation parameterization
 - Control channel Interference, Imperfect Interference detection using CQI, Error in detecting # of users using PRACH
- NS-3 Simulations (detailed LTE implementation)
 - Comparison with
 - 802.11 af
 - LTE
 - FERMI (centralized scheme)

Results - Summary

- Real world measurements:
 - Range up to 1.3km with 1Mbps TCP rates at > 85% of locations
- Simulation:
 - Coverage increased by 37% and 16%
 - median completion times reduced by 2.3x compared to Wi-Fi
 - Starved clients reduced by 90%-70%
 - 2x and 3x median throughput gain

Conclusion

- CellFi: Unlicensed TVWS Cellular
 - Long-range LTE-based network
 - Compliant with TVWS requirements
 - Decentralized interference management
 - Compatible with the existing LTE network stack